Unveiling Interfacial Effects for Efficient and Stable Hydrogen Evolution Reaction on Ruthenium Nanoparticles-Embedded Pentlandite Composites

Small. 2023 Nov;19(44):e2301721. doi: 10.1002/smll.202301721. Epub 2023 Jun 29.

Abstract

Heterogenous catalysis is important for future clean and sustainable energy systems. However, an urgent need to promote the development of efficient and stable hydrogen evolution catalysts still exists. In this study, ruthenium nanoparticles (Ru NPs) are in situ grown on Fe5 Ni4 S8 support (Ru/FNS) by replacement growth strategy. An efficient Ru/FNS electrocatalyst with enhanced interfacial effect is then developed and successfully applied for pH-universal hydrogen evolution reaction (HER). The Fe vacancies formed by FNS during the electrochemical process are found to be conducive to the introduction and firm anchoring of Ru atoms. Compared to Pt atoms, Ru atoms get easily aggregated and then grow rapidly to form NPs. This induces more bonding between Ru NPs and FNS, preventing the fall-off of Ru NPs and maintaining the structural stability of FNS. Moreover, the interaction between FNS and Ru NPs can adjust the d-band center of Ru NPs, as well as balance the hydrolytic dissociation energy and hydrogen binding energy. Consequently, the as-prepared Ru/FNS electrocatalyst exhibits excellent HER activity and improved cycle stability under pH-universal conditions. The developed pentlandite-based electrocatalysts with low cost, high activity, and good stability are promising candidates for future applications in water electrolysis.

Keywords: Fe5Ni4S8; hydrogen evolution reaction; interfacial effect; nanoparticles; pH-universal; stability.