Linear-exponential loss incorporated deep learning for imbalanced classification

ISA Trans. 2023 Sep:140:279-292. doi: 10.1016/j.isatra.2023.06.016. Epub 2023 Jun 21.

Abstract

The class imbalance issue is a pretty common and enduring topic all the time. When encountering unbalanced data distribution, conventional methods are prone to classify minority samples as majority ones, which may cause severe consequences in reality. It is crucial yet challenging to cope with such problems. In this paper, inspired by our previous work, we borrow the linear-exponential (LINEX) loss function in statistics into deep learning for the first time and extend it into a multi-class form, denoted as DLINEX. Compared with existing loss functions in class imbalance learning (e.g., the weighted cross entropy-loss and the focal loss), DLINEX has an asymmetric geometry interpretation, which can adaptively focus more on the minority and hard-to-classify samples by solely adjusting one parameter. Besides, it simultaneously achieves between and within class diversities via caring about the inherent properties of each instance. As a result, DLINEX achieves 42.08% G-means on the CIFAR-10 dataset at the imbalance ratio of 200, 79.06% G-means on the HAM10000 dataset, 82.74% F1 on the DRIVE dataset, 83.93% F1 on the CHASEDB1 dataset and 79.55% F1 on the STARE dataset The quantitative and qualitative experiments convincingly demonstrate that DLINEX can work favorably in imbalanced classifications, either at the image-level or the pixel-level.

Keywords: Class imbalance learning; Classification; Deep learning; LINEX loss; Segmentation.