Synergistically enhanced sodium ion storage from encapsulating highly dispersed cobalt nanodots into N, P, S tri-doped hexapod carbon framework

J Colloid Interface Sci. 2023 Nov:649:741-749. doi: 10.1016/j.jcis.2023.06.159. Epub 2023 Jun 25.

Abstract

Development of multitudinous heteroatoms co-doped carbon nanomaterials with pleasurable electrochemical behavior for sodium ion batteries is still an enormous challenge. Herein, high dispersion cobalt nanodots encapsulating into N, P, S tri-doped hexapod carbon (H-Co@NPSC) have been victoriously synthesized via H-ZIF67@polymer template strategy with using poly (hexachlorocyclophos-phazene and 4,4'-sulfonyldiphenol) as both carbon source and N, P, S multiple heteroatom doping sources. The uniform distribution of cobalt nanodots and the Co-N bonds are conducive to form a high conductive network, which synergistically increase a lot adsorption sites and lessens the diffusion energy barrier, thereby improving the fast Na+ ions diffusion kinetics. Consequently, H-Co@NPSC delivers the reversible capacity of 311.1 mAh g-1 at 1 A g-1 after 450 cycles with 70% capacity storage rate, while obtains the capacity of 237.1 mAh g- 1 after 200 cycles at the elevated current densities of 5 A g-1 as an excellent anode material for SIBs. These interesting results pave a generous avenue for the exploitation of promising carbon anode materials for Na+ storage.

Keywords: Co-N bonds; Hexapod-shaped; N, P, S tri-doped carbon; Sodium ion batteries; ZIF-67.