Sensitivity-enhanced Fabry-Perot interferometric fiber-optic microphone using hollow cantilever

Opt Express. 2023 Jun 19;31(13):21796-21805. doi: 10.1364/OE.492026.

Abstract

Transducer components are crucial in optimizing the sensitivity of microphones. Cantilever structure is commonly used as a structural optimization technique. Here, we present a novel Fabry-Perot (F-P) interferometric fiber-optic microphone (FOM) using a hollow cantilever structure. The proposed hollow cantilever aims to reduce the effective mass and spring constant of the cantilever, thereby enhancing the sensitivity of the FOM. Experimental results demonstrate that the proposed structure outperforms the original cantilever design in terms of sensitivity. The sensitivity and minimum detectable acoustic pressure level (MDP) can reach 91.40 mV/Pa and 6.20 µPa/Hz at 1.7 kHz, respectively. Notably, the hollow cantilever provides an optimization framework for highly sensitive FOMs.