tet-Dependent Gene Expression in Stenotrophomonas maltophilia

Microbiol Spectr. 2023 Aug 17;11(4):e0157623. doi: 10.1128/spectrum.01576-23. Epub 2023 Jun 28.

Abstract

Stenotrophomonas maltophilia is increasingly recognized as an important nosocomial pathogen among the Gram-negative bacteria. Intrinsic resistance to different classes of antibiotics makes treatment of infections challenging. A deeper understanding of S. maltophilia physiology and virulence requires molecular genetic tools. Here, we describe the implementation of tetracycline-dependent gene regulation (tet regulation) in this bacterium. The exploited tet regulatory sequence of transposon Tn10 contained the tetR gene and three intertwined promoters, one of which was required for regulated expression of a target gene or operon. The episomal tet architecture was tested with a gfp variant as a quantifiable reporter. Fluorescence intensity was directly correlated with the concentration of the inducer anhydrotetracycline (ATc) applied and the duration of induction. Also, the expression of the rmlBACD operon of S. maltophilia K279a was subjected to tet control. These genes code for the synthesis of dTDP-l-rhamnose, an activated nucleotide sugar precursor of lipopolysaccharide (LPS) formation. A ΔrmlBACD mutant was complemented with a plasmid carrying this operon downstream of the tet sequence. In the presence of ATc, the LPS pattern was similar to that of wild-type S. maltophilia, whereas without the inducer, fewer and apparently shorter O-antigen chains were detected. This underscores the functionality and usefulness of the tet system for gene regulation and, prospectively, the validation of targets for new anti-S. maltophilia drugs. IMPORTANCE Stenotrophomonas maltophilia is an emerging pathogen in hospital settings and poses a threat to immunocompromised patients. Due to a high level of resistance to different types of antibiotics, treatment options are limited. We here adapted a tool for inducible expression of genes of interest, known as the tet system, to S. maltophilia. Genes relevant to producing surface carbohydrate structures (lipopolysaccharide [LPS]) were placed under the control of the tet system. In the presence of an inducer, the LPS pattern was similar to that of wild-type S. maltophilia, whereas in the "off" state of the system (without inducer), fewer and apparently shorter versions of LPS were detected. The tet system is functional in S. maltophilia and may be helpful to reveal gene-function relationships to gain a deeper understanding of the bacterium's physiology and virulence.

Keywords: O antigen; Stenotrophomomas maltophilia; gene regulation; inducible expression; lipopolysaccharide; tetracycline.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / metabolism
  • Anti-Bacterial Agents / pharmacology
  • Gene Expression
  • Humans
  • Lipopolysaccharides / metabolism
  • Stenotrophomonas maltophilia* / genetics
  • Stenotrophomonas maltophilia* / metabolism

Substances

  • Lipopolysaccharides
  • 4-epianhydrotetracycline
  • Anti-Bacterial Agents