A High-Nickel Layered Double Hydroxides Cathode Boosting the Rate Capability for Chloride Ion Batteries with Ultralong Cycling Life

Small. 2023 Oct;19(43):e2302896. doi: 10.1002/smll.202302896. Epub 2023 Jun 27.

Abstract

Chloride-ion batteries (CIBs) have drawn growing attention in large-scale energy storage applications owing to their comprehensive merits of high theoretical energy density, dendrite-free characteristic, and abundance of chloride-containing materials. Nonetheless, cathodes for CIBs are plagued by distinct volume effect and sluggish Cl- diffusion kinetics, leading to inferior rate capability and short cycling life. Herein, an unconventional Ni5 Ti-Cl LDH is reported with a high nickel ratio as a cathode material for CIB. The reversible capacity of Ni5 Ti-Cl LDH retains 127.9 mAh g-1 over 1000 cycles at a large current density of 1000 mA g-1 , which exceeds that of ever reported CIBs, with extraordinary low volume change of 1.006% during a whole charge/discharge process. Such superior Cl-storage performance is attributed to synergetic contributions consisting of high redox activity from Ni2+ /Ni3+ and pinning Ti that restrains local structural distortion of LDH host layers and enhances adsorption intensity of chloride atoms during the reversible Cl- intercalation/de-intercalation in LDH gallery, which are revealed by a comprehensive study including X-ray photoelectron spectroscopy, kinetic investigations, and DFT calculations. This work provides an effective strategy to design low-cost LDHs materials for high-performance CIBs, which are also applicable to other types of halide-ion batteries (e.g., fluoride-ion and bromide-ion batteries).

Keywords: chloride ion batteries; high nickel; high rate capability; layered double hydroxides; ultralong cycling life.