Amorphous Fe-Phytate Enables Fast Polysulfide Redox for High-Loading Lithium Sulfur Batteries

Small. 2023 Oct;19(43):e2302548. doi: 10.1002/smll.202302548. Epub 2023 Jun 27.

Abstract

Utilizing catalysts to accelerate polysulfides conversion are of paramount importance to eliminate the shuttling effect and improve the practical performance of lithium-sulfur (Li-S) batteries. The amorphism, attributes to the abundant unsaturated surface active sites, has recently been recognized as a contribution to increase the activity of catalysts. However, the investigation on amorphous catalysts has received limited interest in lithium-sulfur batteries due to lack of understanding of their composition structure activity. Herein, a amorphous Fe-Phytate structure is proposed to enhance polysulfide conversion and suppress polysulfide shuttling by modifying polypropylene separator (C-Fe-Phytate@PP). The polar Fe-Phytate with distorted VI coordination Fe active centers strongly intake polysulfide electron by forming FeS bond to accelerate the polysulfide conversion. The surface mediated polysulfides redox gives rise to a higher exchange current in comparison with carbon. Furthermore, Fe-Phytate owns robust adsorption to polysulfide and effectively reduce the shuttling effect. With the C-Fe-Phytate@PP separator, the Li-S batteries exhibit an outstanding rate capability of 690 mAh g-1 at 5 C and an ultrahigh areal capacity of 7.8 mAh cm-2 even at a high sulfur loading of 7.3 mg cm-2 . The work provides a novel separator for facilitating the actual applications of Li-S batteries.

Keywords: amorphous materials; lithium-sulfur batteries; polar Fe-O-P bond; polysulfides conversion; polysulfides trapping.