CNTs/Fe-BTC Composite Materials for the CO2-Photocatalytic Reduction to Clean Fuels: Batch and Continuous System

Molecules. 2023 Jun 13;28(12):4738. doi: 10.3390/molecules28124738.

Abstract

CNTs/Fe-BTC composite materials were synthesized with the one-step solvothermal method. MWCNTs and SWCNTs were incorporated in situ during synthesis. The composite materials were characterized by different analytical techniques and used in the CO2-photocatalytic reduction to value-added products and clean fuels. In the incorporation of CNTs into Fe-BTC, better physical-chemical and optical properties were observed compared to Fe-BTC pristine. SEM images showed that CNTs were incorporated into the porous structure of Fe-BTC, indicating the synergy between them. Fe-BTC pristine showed to be selective to ethanol and methanol; although, it was more selective to ethanol. However, the incorporation of small amounts of CNTs into Fe-BTC not only showed higher production rates but changes in the selectivity compared with the Fe-BTC pristine were also observed. It is important to mention that the incorporation of CNTs into MOF Fe-BTC allowed for increasing the mobility of electrons, decreasing the recombination of charge carriers (electron/hole), and increasing the photocatalytic activity. In both reaction systems (batch and continuous), composite materials showed to be selective towards methanol and ethanol; however, in the continuous system, lower production rates were observed due to the decrease in the residence time compared to the batch system. Therefore, these composite materials are very promising systems to convert CO2 to clean fuels that could replace fossil fuels soon.

Keywords: CNTs/Fe-BTC; CO2; CO2-photocatalytic reduction; Fe-BTC; MWCNTs; SWCNTs; clean fuels.

Grants and funding

This research was funded by Universidad Autónoma Metropolitana-Azcapotzalco (Mexican University) and MINECO (Spanish Government) project PID2020-114192RBC41. F.R.-M. also acknowledges financial support from Comunidad de Madrid for a “Doctorados In-dustriales” project (IND2020/IND-17375), which is co-financed by the European Social Fund.