Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks

Molecules. 2023 Jun 9;28(12):4680. doi: 10.3390/molecules28124680.

Abstract

Covalent organic frameworks (COFs) have emerged as promising electrocatalysts due to their controllable architectures, highly exposed molecular active sites, and ordered structures. In this study, a series of porphyrin-based COFs (TAPP-x-COF) with various transition metals (Co, Ni, Fe) were synthesized via a facile post-metallization strategy under solvothermal synthesis. The resulting porphyrin-based COFs showed oxygen reduction reaction (ORR) activity with a trend in Co > Fe > Ni. Among them, TAPP-Co-COF exhibited the best ORR activity (E1/2 = 0.66 V and jL = 4.82 mA cm-2) in alkaline media, which is comparable to those of Pt/C under the same conditions. Furthermore, TAPP-Co-COF was employed as a cathode in a Zn-air battery, demonstrating a high power density of 103.73 mW cm-2 and robust cycling stability. This work presents a simple method for using COFs as a smart platform to fabricate efficient electrocatalysts.

Keywords: covalent organic frameworks; oxygen reduction reaction; porous materials.