A Miniature Multi-Functional Photoacoustic Probe

Micromachines (Basel). 2023 Jun 19;14(6):1269. doi: 10.3390/mi14061269.

Abstract

Photoacoustic technology is a promising tool to provide morphological and functional information in biomedical research. To enhance the imaging efficiency, the reported photoacoustic probes have been designed coaxially involving complicated optical/acoustic prisms to bypass the opaque piezoelectric layer of ultrasound transducers, but this has led to bulky probes and has hindered the applications in limited space. Though the emergence of transparent piezoelectric materials helps to save effort on the coaxial design, the reported transparent ultrasound transducers were still bulky. In this work, a miniature photoacoustic probe with an outer diameter of 4 mm was developed, in which an acoustic stack was made with a combination of transparent piezoelectric material and a gradient-index lens as a backing layer. The transparent ultrasound transducer exhibited a high center frequency of ~47 MHz and a -6 dB bandwidth of 29.4%, which could be easily assembled with a pigtailed ferrule of a single-mode fiber. The multi-functional capability of the probe was successfully validated through experiments of fluid flow sensing and photoacoustic imaging.

Keywords: GRIN lens backing; OR-PAM; miniature probe; transparent ultrasound transducer.