A High Performance All-Textile Wearable Antenna for Wristband Application

Micromachines (Basel). 2023 May 31;14(6):1169. doi: 10.3390/mi14061169.

Abstract

A compact, conformal, all-textile wearable antenna is proposed in this paper for the 2.45 GHz ISM (Industrial, Scientific and Medical) band. The integrated design consists of a monopole radiator backed by a 2 × 1 Electromagnetic Band Gap (EBG) array, resulting in a small form factor suitable for wristband applications. An EBG unit cell is optimized to work in the desired operating band, the results of which are further explored to achieve bandwidth maximization via floating EBG ground. A monopole radiator is made to work in association with the EBG layer to produce the resonance in the ISM band with plausible radiation characteristics. The fabricated design is tested for free space performance analysis and subjected to human body loading. The proposed antenna design achieves bandwidth of 2.39 GHz to 2.54 GHz with a compact footprint of 35.4 × 82.4 mm2. The experimental investigations reveal that the reported design adequately retains its performance while operating in close proximity to human beings. The presented Specific Absorption Rate (SAR) analysis reveals 0.297 W/kg calculated at 0.5 W input power, which certifies that the proposed antenna is safe for use in wearable devices.

Keywords: EBG (Electromagnetic Band Gap); SAR (Specific Absorption Rate); medical applications; wearable antenna.