Effects of β-Si3N4 Seeds on Microstructure and Performance of Si3N4 Ceramics in Semiconductor Package

Materials (Basel). 2023 Jun 19;16(12):4461. doi: 10.3390/ma16124461.

Abstract

Among the various ceramic substrate materials, Si3N4 ceramics have demonstrated high thermal conductivity, good thermal shock resistance, and excellent corrosion resistance. As a result, they are well-suited for semiconductor substrates in high-power and harsh conditions encountered in automobiles, high-speed rail, aerospace, and wind power. In this work, Si3N4 ceramics with various ratios of α-Si3N4 and β-Si3N4 in raw powder form were prepared by spark plasma sintering (SPS) at 1650 °C for 30 min under 30 MPa. When the content of β-Si3N4 was lower than 20%, with the increase in β-Si3N4 content, the ceramic grain size changed gradually from 1.5 μm to 1 μm and finally resulted in 2 μm mixed grains. However, As the content of β-Si3N4 seed crystal increased from 20% to 50%, with the increase in β-Si3N4 content, the ceramic grain size changed gradually from 1 μm and 2 μm to 1.5 μm. Therefore, when the content of β-Si3N4 in the raw powder is 20%, the sintered ceramics exhibited a double-peak structure distribution and the best overall performance with a density of 97.5%, fracture toughness of 12.1 MPa·m1/2, and a Vickers hardness of 14.5 GPa. The results of this study are expected to provide a new way of studying the fracture toughness of silicon nitride ceramic substrates.

Keywords: ceramic substrate; fracture toughness; silicon nitride; β-Si3N4 crystal seed.