Linalool-Incorporated Synergistically Engineered Modified Liposomal Nanocarriers for Enhanced Transungual Delivery of Terbinafine against Onychomycosis

Materials (Basel). 2023 Jun 16;16(12):4424. doi: 10.3390/ma16124424.

Abstract

This work investigates the synthesis of linalool-containing invasomes for terbinafine (TBF-IN) in order to increase the solubility, bioavailability, and nail permeability of terbinafine (TBF) for transungual administration. TBF-IN was created utilising the thin-film hydration technique, and with the Box-Behnken design (BBD), optimisation was carried out. TBF-INopt were investigated for vesicle size, zeta potential, PDI (Polydispersity index), entrapment efficiency (EE) and in vitro TBF release. In addition, nail permeation analysis, TEM (transmission electron microscopy), and CLSM (confocal scanning laser microscopy) were performed for further evaluation. The TBF-INopt exhibited spherical as well as sealed vesicles with a considerably small size of 146.3 nm, an EE of 74.23 per cent, a PDI of 0.1612, and an in vitro release of 85.32 per cent. The CLSM investigation revealed that the new formulation had better TBF nail penetration than the TBF suspension gel. The antifungal investigation demonstrated that the TBF-IN gel has superior antifungal activity against Trichophyton rubrum and Candida albicans compared to the commercially available terbinafine gel. In addition, an investigation of skin irritation using Wistar albino rats indicates that the TBF-IN formulation is safe for topical treatment. This study confirmed that the invasomal vesicle formulation is an effective vehicle for the transungual delivery of TBF for the treatment of onychomycosis.

Keywords: Box–Behnken design; anti-fungal study; invasomes; onychomycosis; terbinafine.