A Novel Evidence Combination Method Based on Improved Pignistic Probability

Entropy (Basel). 2023 Jun 16;25(6):948. doi: 10.3390/e25060948.

Abstract

Evidence theory is widely used to deal with the fusion of uncertain information, but the fusion of conflicting evidence remains an open question. To solve the problem of conflicting evidence fusion in single target recognition, we proposed a novel evidence combination method based on an improved pignistic probability function. Firstly, the improved pignistic probability function could redistribute the probability of multi-subset proposition according to the weight of single subset propositions in a basic probability assignment (BPA), which reduces the computational complexity and information loss in the conversion process. The combination of the Manhattan distance and evidence angle measurements is proposed to extract evidence certainty and obtain mutual support information between each piece of evidence; then, entropy is used to calculate the uncertainty of the evidence and the weighted average method is used to correct and update the original evidence. Finally, the Dempster combination rule is used to fuse the updated evidence. Verified by the analysis results of single-subset proposition and multi-subset proposition highly conflicting evidence examples, compared to the Jousselme distance method, the Lance distance and reliability entropy combination method, and the Jousselme distance and uncertainty measure combination method, our approach achieved better convergence and the average accuracy was improved by 0.51% and 2.43%.

Keywords: DS evidence theory; information fusion; pignistic probability function.

Grants and funding

This research received no external funding.