Cognition and Consciousness Entwined

Brain Sci. 2023 May 28;13(6):872. doi: 10.3390/brainsci13060872.

Abstract

We argue that cognition (information processing) and internal phenomenological sensations, including emotions, are intimately related and are not separable. We aver that phenomenological sensations are dynamical "modes" of firing behaviour that (i) exist over time and over large parts of the cortex's neuron-to-neuron network and (ii) are consequences of the network-of-networks architecture, coupling the individual neuronal dynamics and the necessary time delay incurred by neuron-to-neuron transmission: if you possess those system properties, then you will have the dynamical modes and, thus, the phenomenological sensations. These modes are consequences of incoming external stimuli and are competitive within the system, suppressing and locking-out one another. On the other hand, the presence of any such mode acts as a preconditioner for the immediate (dynamic) cognitive processing of information. Thus, internal phenomenological sensations, including emotions, reduce the immediate decision set (of feasible interpretations) and hence the cognitive load. For organisms with such a mental inner life, there would clearly be a large cognitive evolutionary advantage, resulting in the well-known "thinking fast, thinking slow" phenomena. We call this the entwinement hypothesis: how latent conscious phenomena arise from the dynamics of the cognitive processing load, and how these precondition the cognitive tasks immediately following. We discuss how internal dynamical modes, which are candidates for emotions down to single qualia, can be observed by reverse engineering large sets of simulations of system's stimulated responses, either using vast supercomputers (with full 10B neuronal network analyses) or else using laptops to do the same for appropriately generalised Kuramoto models (networks of k-dimensional clocks, each representing the 10,000 neurons within a single neural column). We explain why such simplifications are appropriate. We also discuss the consequent cognitive advantages for information-processing systems exhibiting internal sensations and the exciting implications for next-generation (non-binary) computation and for AI.

Keywords: AI; architecture; delay dynamics; modes; non-binary chips; phenomenological sensations; preconditioning; simulations.