The Role of Native T1 and T2 Mapping Times in Identifying PD-L1 Expression and the Histological Subtype of NSCLCs

Cancers (Basel). 2023 Jun 20;15(12):3252. doi: 10.3390/cancers15123252.

Abstract

We investigated the association of T1/T2 mapping values with programmed death-ligand 1 protein (PD-L1) expression in lung cancer and their potential in distinguishing between different histological subtypes of non-small cell lung cancers (NSCLCs). Thirty-five patients diagnosed with stage III NSCLC from April 2021 to December 2022 were included. Conventional MRI sequences were acquired with a 1.5 T system. Mean T1 and T2 mapping values were computed for six manually traced ROIs on different areas of the tumor. Data were analyzed through RStudio. Correlation between T1/T2 mapping values and PD-L1 expression was studied with a Wilcoxon-Mann-Whitney test. A Kruskal-Wallis test with a post-hoc Dunn test was used to study the correlation between T1/T2 mapping values and the histological subtypes: squamocellular carcinoma (SCC), adenocarcinoma (ADK), and poorly differentiated NSCLC (PD). There was no statistically significant correlation between T1/T2 mapping values and PD-L1 expression in NSCLC. We found statistically significant differences in T1 mapping values between ADK and SCC for the periphery ROI (p-value 0.004), the core ROI (p-value 0.01), and the whole tumor ROI (p-value 0.02). No differences were found concerning the PD NSCLCs.

Keywords: T1 mapping; T2 mapping; lung MRI; non-small cell lung cancer (NSCLC); programmed death-ligand 1 (PD-L1).