Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment

Theor Appl Genet. 2023 Jun 27;136(7):163. doi: 10.1007/s00122-023-04402-1.

Abstract

We demonstrated a short-cycle B. napus line, Sef1, with a highly efficient and fast transformation system, which has great potential in large-scale functional gene analysis in a controlled environment. Rapeseed (Brassica napus L.) is an essential oil crop that accounts for a considerable share of global vegetable oil production. Nonetheless, studies on functional genes of B. napus are lagging behind due to the complicated genome and long growth cycle, this is largely due to the limited availability of gene analysis and modern genome editing-based molecular breeding. In this study, we demonstrated a short-cycle semi-winter-type Brassica napus 'Sef1' with very early-flowering and dwarf phenotype, which has great potential in large-scale indoor planting. Through the construction of an F2 population of Sef1 and Zhongshuang11, bulked segregant analysis (BSA) combined with the rape Bnapus50K SNP chip assay method was used to identify the early-flowering genes in Sef1, and a mutation in BnaFT.A02 was identified as a major locus significantly affecting the flowering time in Sef1. To further investigate the mechanism of early flowering in Sef1 and discover its potential in gene function analysis, an efficient Agrobacterium-mediated transformation system was established. The average transformation efficiency with explants of hypocotyls and cotyledons was 20.37% and 12.8%, respectively, and the entire transformation process took approximately 3 months from explant preparation to seed harvest of transformed plants. This study demonstrates the great potential of Sef1 for large-scale functional gene analysis.

MeSH terms

  • Brassica napus* / genetics
  • Environment, Controlled
  • Genomics
  • Oligonucleotide Array Sequence Analysis
  • Phenotype