Energy-transfer-induced [3+2] cycloadditions of N-N pyridinium ylides

Nat Chem. 2023 Aug;15(8):1091-1099. doi: 10.1038/s41557-023-01258-2. Epub 2023 Jun 26.

Abstract

Photocycloaddition is a powerful reaction to enable the conversion of alkenes into high-value synthetic materials that are normally difficult to obtain under thermal conditions. Lactams and pyridines, both prominent in pharmaceutical applications, currently lack effective synthetic strategies to combine them within a single molecular structure. Here we describe an efficient approach to diastereoselective pyridyl lactamization via a photoinduced [3+2] cycloaddition, based on the unique triplet-state reactivity of N-N pyridinium ylides in the presence of a photosensitizer. The corresponding triplet diradical intermediates allow the stepwise radical [3+2] cycloaddition with a broad range of activated and unactivated alkenes under mild conditions. This method exhibits excellent efficiency, diastereoselectivity and functional group tolerance, providing a useful synthon for ortho-pyridyl γ- and δ-lactam scaffolds with syn-configuration in a single step. Combined experimental and computational studies reveal that the energy transfer process leads to a triplet-state diradical of N-N pyridinium ylides, which promotes the stepwise cycloaddition.