Evaluation of a new hyperbaric oxygen ventilator during volume-controlled ventilation

Diving Hyperb Med. 2023 Jun 30;53(2):129-137. doi: 10.28920/dhm53.2.129-137.

Abstract

Introduction: The performance of the Shangrila590 hyperbaric ventilator (Beijing Aeonmed Company, Beijing, China) was evaluated during volume-controlled ventilation.

Methods: Experiments were conducted in a multiplace hyperbaric chamber at 101, 152, 203, and 284 kPa (1.0, 1.5, 2.0 and 2.8 atmospheres absolute [atm abs]). With the ventilator in volume control ventilation (VCV) mode and connected to a test lung, comparison was made of the set tidal volume (VTset) versus delivered tidal volume (VT) and minute volume (MV) at VTset between 400 and 1,000 mL. Peak inspiratory pressure was also recorded. All measurements were made across 20 respiratory cycles.

Results: Across all ambient pressures and ventilator settings the difference between VTset and actual VT and between predicted MV and actual MV were small and clinicially insignificant despite reaching statistical significance. Predictably, Ppeak increased at higher ambient pressures. With VTset 1,000 mL at 2.8 atm abs the ventilator produced significantly greater VT, MV and Ppeak.

Conclusions: This new ventilator designed for use in hyperbaric environments performs well. It provides relatively stable VT and MV during VCV with VTset from 400 mL to 800 mL at ambient pressures from 1.0 to 2.8 atm abs, as well as VTset 1,000 mL at ambient pressures from 1.0 to 2.0 atm abs.

Keywords: Airway resistance; Intensive care; Intermittent positive-pressure ventilation; Respiratory mechanics.

MeSH terms

  • Humans
  • Hyperbaric Oxygenation*
  • Lung
  • Oxygen
  • Respiration, Artificial
  • Tidal Volume
  • Ventilators, Mechanical

Substances

  • Oxygen