Exposure and health risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons during winter at residential homes: A case study in four Chinese cities

Sci Total Environ. 2023 Oct 15:895:165111. doi: 10.1016/j.scitotenv.2023.165111. Epub 2023 Jun 25.

Abstract

Residential indoor PM2.5 were concurrently collected in Hong Kong, Guangzhou, Shanghai, and Xi'an during the winter and early spring seasons of 2016-2017, for updating the current knowledge of the spatial variation of indoor air pollution and the potential health risks in China. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) were characterized, and the associated inhalation cancer risks were assessed by a probabilistic approach. Higher levels of indoor PAHs were identified in Xi'an residences (averaged at 176.27 ng m-3) with those of other cities ranging from 3.07 to 15.85 ng m-3. Traffic-related fuel combustion was identified as a common contributor to indoor PAHs through outdoor infiltration for all investigated cities. Indoor PAHs profiles showed city-specific differences, while distinctions between profiles based on indoor activities or ambient air quality were limited. Similar with the total PAHs concentrations, the estimated toxic equivalencies (TEQ) with reference to benzo[a]pyrene in Xi'an residences (median at 18.05 ng m-3) were above the recommended value of 1 ng m-3 and were magnitudes higher than the other investigated cities with estimated median TEQ ranging from 0.27 to 1.55 ng m-3. Incremental lifetime cancer risk (ILCR) due to PAHs inhalation exposure was identified with a descending order of adult (median at 8.42 × 10-8) > adolescent (2.77 × 10-8) > children (2.20 × 10-8) > senior (1.72 × 10-8) for different age groups. Considering the lifetime exposure-associated cancer risk (LCR), potential risks were identified for residents in Xi'an as an LCR level over 1 × 10-6 was identified for half of the adolescent group (median at 8.96 × 10-7), and exceedances were identified for about 90 % of the groups of adults (10th percentile at 8.29 × 10-7) and seniors (10th percentile at 1.02 × 10-6). The associated LCR estimated for other cities were relatively insignificant.

Keywords: Fine particulate matter; Indoor activities; Inhalation cancer risk; PAH; Probabilistic risk assessment; Residence.

MeSH terms

  • Adolescent
  • Adult
  • Air Pollutants* / analysis
  • Child
  • China
  • Cities
  • Environmental Monitoring
  • Humans
  • Neoplasms*
  • Particulate Matter / analysis
  • Polycyclic Aromatic Hydrocarbons* / analysis
  • Risk Assessment
  • Seasons

Substances

  • Air Pollutants
  • Particulate Matter
  • Polycyclic Aromatic Hydrocarbons