Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters

Acc Chem Res. 2023 Jul 18;56(14):1942-1952. doi: 10.1021/acs.accounts.3c00175. Epub 2023 Jun 26.

Abstract

ConspectusCharacterized by the reverse intersystem crossing (RISC) process from the triplet state (T1) to the singlet state (S1), thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both triplet and singlet excitons without noble metals, are considered to be third-generation organic electroluminescent materials. Rapid advances in molecular design criteria, understanding the photophysics underlying TADF, and applications of TADF materials as emitters in organic light-emitting diodes (OLEDs) have been achieved. Theoretically, enhanced spin-orbit coupling (SOC) between singlet and triplet states can result in a fast RISC process and thus a high light-emitting efficiency according to Fermi's golden rule. Therefore, regulating the nature of triplet excited states by elaborate molecular design to improve SOC is an effective approach to high-efficiency TADF-based OLEDs. Generally, on one hand, the increased local excited (LE) populations of the excited triplet state can significantly improve the nature flips between S1 and T1. On other hand, the reduced energy gap between S1 and the lowest triplet with a charge transfer (CT) characteristic can also enhance their vibronic coupling. Consequently, it is vital to determine how to regulate the nature of triplet excited states by molecular design to guide the material synthesis, especially for polymeric emitters.In this Account, we focus on modulating the strategy of triplet excited states for TADF emitters and an in-depth understanding of the photophysical processes, leading to optimized OLED device performance. We include several kinds of strategies to control the nature of triplet excited states to guide the synthesis of small-molecule and polymer TADF emitters: (1) Modulating the electronic distribution of conjugated polymeric backbones by copolymerizing the electron-donating host: accordingly, the nature of excited states can be changed, especially for triplets. Meanwhile, the utilization of excitons can be systematically improved by adjusting the electronic structure of triplet states with long-range distribution in the conjugated polymeric backbones. (2) Halogenating acceptors of TADF units: the introduced halogen atoms would reestablish the electronic distribution of the triplet and relocate the hole orbits, resulting in a CT and LE hybrid nature of a triplet transformed into a LE-predominant state, which favors the RISC process. (3) Stereostructure regulation: by constructing a diverse arrangement of three-dimensional spatial configurations or conjugated architectures, the nature of the triplet can also be finely tuned, such as hyperbranched structures with multiple triplet-singlet vibration couplings, half-dendronized-half-encapsulated asymmetric systems, trinaphtho[3,3,3] propeller-based three-dimensional spatial interspersed structures, intramolecular close-packed donor-acceptor systems, and so on. We hope that this Account will provide insights into new structures and mechanisms for achieving high-performance OLEDs based on regulating the nature of triplet excited states.