Theoretical aspects of interaction of the anticancer drug cytarabine with human serum albumin

Struct Chem. 2023 Mar 29:1-9. doi: 10.1007/s11224-023-02164-6. Online ahead of print.

Abstract

Despite diagnostic and therapeutic methods, cancer is a major cause of death worldwide. Since anticancer drugs affect both normal and cancer cells, targeted drug delivery systems can play a key role in reducing the destructive effects of anticancer drugs on normal cells. In this regard, the use of stimulus-sensitive polymers has increased in recent years. This study has attempted to investigate interaction of the anticancer drug cytarabine with a stimuli-sensitive polymer, human serum albumin (HSA), one of the most abundant protein in blood plasma, via computational methods at both body temperature and tumor temperature. For this purpose, molecular docking was performed using Molegro virtual Docker software to select the best ligand in terms of binding energy to simulate molecular dynamics. Then, molecular dynamics simulation was performed on human serum albumin with code (1Ao6) and cytarabine with code (AR3), using Gromacs software and the results were presented in the graphs. The simulations were performed at 310 K (normal cell temperature) and 313 K (cancer cell temperature) in 100 ns. Results showed drug release occurred at a temperature of 313 K. These findings demonstrated the sensitivity of human serum albumin to temperature.

Keywords: Cytarabine; Human serum albumin; Molecular docking; Molecular dynamics simulation; Targeted drug delivery.