Tracing and trapping micro- and nanoplastics: Untapped mitigation potential of aquatic plants?

Water Res. 2023 Aug 15:242:120249. doi: 10.1016/j.watres.2023.120249. Epub 2023 Jun 18.

Abstract

Micro- and nanoplastics are emerging concerns due to their environmental ubiquity and currently largely unknown ecological impacts. Leveraging on a recently developed method using europium-doped polystyrene particles (PS-Eu), our present work aimed to accurately trace the uptake and transport of micro- and nanoplastics in aquatic plants and shed insights into the potential of different aquatic plants for trapping and removal of plastics from water environment. Seedlings of Vallisneria denseserrulata Makino (submerged plant), Iris tectorum Maxim (emergent plant), and Eichhornia crassipes Solms (floating plant) were exposed to 100 nm and 2 μm PS-Eu in freshwater (5 μg/mL) or sediments (5 μg/g) for 8 weeks. Fluorescence imaging clearly evidenced that PS-Eu mainly accumulated in the intercellular space and were transported from roots to leaves via the apoplastic path and vascular bundle. Mass spectrum analysis demonstrated that up to 6250 μg/g nanoplastics were trapped in aquatic plants (mainly in roots) with a bioconcentration factor of 306.5, depending on exposure routes and plant species. Owing to their excellent capture capability and high tolerance to plastic exposures, floating plants like E. crassipes are promising for immobilizing and removing fine plastics from the water environment.

Keywords: Aquatic plant; Bioaccumulation; Metal-doped particle; Phytoremediation potential; Plastic contamination.