Recent Insights into the Use of Antagonistic Yeasts for Sustainable Biomanagement of Postharvest Pathogenic and Mycotoxigenic Fungi in Fruits with Their Prevention Strategies against Mycotoxins

J Agric Food Chem. 2023 Jul 5;71(26):9923-9950. doi: 10.1021/acs.jafc.3c00315. Epub 2023 Jun 23.

Abstract

Fungi-induced postharvest diseases are the leading causes of food loss and waste. In this context, fruit decay can be directly attributed to phytopathogenic and/or mycotoxin-producing fungi. The U.N. Sustainable Development Goals aim to end hunger by 2030 by improving food security, sustainable agriculture, and food production systems. Antagonistic yeasts are one of the methods presented to achieve these goals. Unlike physical and chemical methods, harnessing antagonistic yeasts as a biological method controls the decay caused by fungi and adsorbs and/or degrades mycotoxins sustainably. Therefore, antagonistic yeasts and their antifungal mechanisms have gained importance. Additionally, mycotoxins' biodetoxification is carried out due to the occurrence of mycotoxin-producing fungal species in fruits. Combinations with processes and agents have been investigated to increase antagonistic yeasts' efficiency. Therefore, this review provides a comprehensive summary of studies on preventing phytopathogenic and mycotoxigenic fungi and their mycotoxins in fruits, as well as biocontrolling and biodetoxification mechanisms.

Keywords: antagonistic yeast; antifungal activity; biodetoxification; biofungicide; mycotoxin; postharvest diseases.

Publication types

  • Review

MeSH terms

  • Antifungal Agents / metabolism
  • Fruit / metabolism
  • Fungi
  • Mycotoxins* / metabolism
  • Yeasts / metabolism

Substances

  • Mycotoxins
  • Antifungal Agents