Population-specific responses in eastern oysters exposed to low salinity in the northern Gulf of Mexico

J Exp Biol. 2023 Jul 1;226(14):jeb244315. doi: 10.1242/jeb.244315. Epub 2023 Jul 26.

Abstract

Eastern oysters, Crassostrea virginica, are facing rapid environmental changes in the northern Gulf of Mexico and can respond to these changes via plasticity or evolution. Plastic responses can immediately buffer against environmental changes, although this buffering may impact the organism's ability to evolve in subsequent generations. While plasticity and evolution are not mutually exclusive, the relative contribution and interaction between them remains unclear. In this study, we investigated the roles of plastic and evolved responses of C. virginica acclimated to low salinity using a common garden experiment with four populations exposed to two salinities. We used three transcriptomic analyses (edgeR, PERMANOVA and WGCNA) combined with physiology data to identify the effect of genotype (population), environment (salinity) and the genotype-environment interaction on both whole-organism and molecular phenotypes. We demonstrate that variation in gene expression is mainly driven by population, with relatively small changes in response to salinity. In contrast, the morphology and physiology data reveal that salinity has a larger influence on oyster performance than the population of origin. All analyses lacked signatures of the genotype×environment interaction and, in contrast to previous studies, we found no evidence for population-specific responses to low salinity. However, individuals from the highest salinity estuary displayed highly divergent gene expression from that of other populations, which could potentially drive population-specific responses to other stressors. Our findings suggest that C. virginica largely rely on plasticity in physiology to buffer the effects of low salinity, but that these changes in physiology do not rely on large persistent changes in gene expression.

Keywords: Common garden; Evolution; Genotype×environment interaction; Plasticity; Transcriptomics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Animals
  • Crassostrea* / physiology
  • Gene Expression Profiling
  • Gulf of Mexico
  • Salinity