Temperature sensitivity and decomposition rate of 101 leaf litter types from Mediterranean ecosystems

Sci Total Environ. 2023 Oct 10:894:165026. doi: 10.1016/j.scitotenv.2023.165026. Epub 2023 Jun 19.

Abstract

Litter decomposition is a fundamental process, and the number of published studies has steadily increased in recent decades. However, few experiments have systematically compared a large number of litter types and evaluated their temperature sensitivity. We conducted a two-year experiment on the decomposition of litter bags containing 101 leaf litter sampled in Mediterranean ecosystems and incubated under laboratory conditions at 4 °C, 14 °C, and 24 °C. Litter was chemically characterized and analysed for carbon (C), nitrogen (N), cellulose and lignin concentration, C/N, and lignin/N ratios, which serve as predictors of decomposition rate. The sensitivity of litter decay rate to temperature was evaluated using Q10. Leaf litter chemistry varied widely in nitrogen content (range 0.52-6.80 %), lignin content (range 1.53-49.31 %), C/N ratio (range 5.21-77.78), and lignin/N ratio (range 0.34-34.90). Litter decomposition rate was negatively related to initial lignin concentration, lignin/N ratio, and C/N ratio, but only in the early stage. In the late stages of decomposition, litter decay rate was negatively correlated with initial N concentration but positively correlated with C/N and lignin/N ratios. Temperature sensitivity was negatively correlated with N concentration and positively correlated with lignin and lignin/N ratio. It is noteworthy that, contrary to expectations, temperature sensitivity exhibited a hump-shaped relationship with decay rate. N, C/N, and lignin/N ratios should be used with caution because their predictive power is reversed with respect to decomposition rate during the decomposition process. In addition, the new finding that temperature sensitivity has a hump-shaped relationship with decomposition rate deserves further confirmation and could be considered in ecosystem-level organic C modeling.

Keywords: C/N ratio; Lignin/N ratio; Litter chemical traits; Nitrogen limitation; Q(10).