Quantifying the contribution of local drivers to observed weakening of spring dust storm frequency over northern China (1982-2017)

Sci Total Environ. 2023 Oct 10:894:164923. doi: 10.1016/j.scitotenv.2023.164923. Epub 2023 Jun 19.

Abstract

Recent studies have suggested that spring dust storm (SDS) events in northern China (NC) have exhibited substantial decline over the past 30 years. However, it is unclear which local factors are most responsible for the decline in SDS events, and the contribution of each dominant factor remains to be determined. This study utilized high-density DS records and collocated homogenized surface meteorological observations from 1982 to 2017, in conjunction with land surface products, to examine the local drivers that influence the long-term variation in SDS frequency (SDSF) over the entire NC area and its three dust-source areas: northwestern China (NWC), north-central China (NCC), and northeastern China (NEC). Results indicated that the observed SDSF averaged over NC, NWC, NCC, and NEC has decreased by 144.4 %, 109.3 %, 166.4 %, and 92.2 %, respectively, during 1982-2017. The variation in SDSF is largely explained by variation in wind speed (WS), precipitation, volumetric soil moisture, and surface bareness. A multivariable linear regression model incorporating these local drivers accounted for 81.0 %, 74.0 %, and 46.9 % of the variance in SDSF in NWC, NCC, and NEC, respectively. Statistical analyses on the local drivers suggested that weakening of WS was the dominant factor in the reduction in SDSF over recent decades, contributing 76.9 %, 54.7 %, and 33.6 % of the variation in NWC, NCC, and NEC, respectively. More importantly, we revealed that the interannual variation in regional SDSF was not only controlled by local drivers, but also influenced by cross-regional transport of dust aerosols emitted from upstream source areas.

Keywords: Contribution decomposition; Dominant factor; Dust storm; Local drivers; Northern China.