Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations

Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2222016120. doi: 10.1073/pnas.2222016120. Epub 2023 Jun 20.

Abstract

Neurons and neuronal circuits must maintain their function throughout the life of the organism despite changing environments. Previous theoretical and experimental work suggests that neurons monitor their activity using intracellular calcium concentrations to regulate their intrinsic excitability. Models with multiple sensors can distinguish among different patterns of activity, but previous work using models with multiple sensors produced instabilities that lead the models' conductances to oscillate and then to grow without bound and diverge. We now introduce a nonlinear degradation term that explicitly prevents the maximal conductances to grow beyond a bound. We combine the sensors' signals into a master feedback signal that can be used to modulate the timescale of conductance evolution. Effectively, this means that the negative feedback can be gated on and off according to how far the neuron is from its target. The modified model recovers from multiple perturbations. Interestingly, depolarizing the models to the same membrane potential with current injection or with simulated high extracellular K+ produces different changes in conductances, arguing that caution must be used in interpreting manipulations that serve as a proxy for increased neuronal activity. Finally, these models accrue traces of prior perturbations that are not visible in their control activity after perturbation but that shape their responses to subsequent perturbations. These cryptic or hidden changes may provide insight into disorders such as posttraumatic stress disorder that only become visible in response to specific perturbations.

Keywords: ion channels; negative feedback; neuronal oscillators; neuronal stability.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / physiology
  • Homeostasis / physiology
  • Membrane Potentials / physiology
  • Neurons* / metabolism