Identification of the driving factors of microplastic load and morphology in estuaries for improving monitoring and management strategies: A global meta-analysis

Environ Pollut. 2023 Sep 15:333:122014. doi: 10.1016/j.envpol.2023.122014. Epub 2023 Jun 17.

Abstract

Estuaries are one of the primary pathways for transferring microplastics (MPs) from the land to the ocean. A comprehensive understanding of the load, morphological characteristics, driving factors, and potential risks of MPs in estuaries is imperative to inform reliable management in this critical transboundary area. Extracted from 135 publications, a global meta-analysis comprising 1477 observations and 124 estuaries was conducted. MP abundance in estuaries was tremendously variable, reaching a mean of 21,342.43 ± 122,557.53 items/m3 in water and 1312.79 ± 6295.73 items/kg in sediment. Fibers and fragments take up a majority proportion in estuaries. Polyester, polypropylene, and polyethylene are the most detected MP types. Around 68.73% and 85.51% of MPs detected in water and sediment are smaller than 1 μm. The redundancy analysis revealed that the explanatory factors influencing the morphological characteristics of MPs differed between water and sediment. Regression analysis shows that MP abundance in water is significantly inversely correlated with mesh/filter size, per capita plastic waste, and the Human Development Index, whereas it is significantly positively correlated with population density and share of global mismanaged plastic waste. MP abundance in sediment significantly positively correlated with aridity index and probability of plastic entering the ocean, while significantly negatively correlated with mesh/filter size. Analysis based on Geodector identified that the extraction method, density of flotation fluid, and sampling depth are the top three explanatory factors for MP abundance in water, while the share of global mismanaged plastic waste, the probability of plastic being emitted into the ocean, and population density are the top three explanatory factors for MP abundance in sediment. In the studied estuaries, 46.75% of the water and 2.74% of the sediment are categorized into extremely high levels of pollution, while 73.08% of the water and 43.48% of the sediment belong to class V of the potential ecological index.

Keywords: Anthropogenic activities; Estuary; Extraction; Microplastic; Morphology; Sampling.

Publication types

  • Meta-Analysis
  • Review

MeSH terms

  • Environmental Monitoring / methods
  • Estuaries
  • Humans
  • Microplastics* / analysis
  • Plastics / analysis
  • Water / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical
  • Water