Bio-Inspired Highly Brilliant Structural Colors and Derived Photonic Superstructures for Information Encryption and Fluorescence Enhancement

Adv Sci (Weinh). 2023 Aug;10(24):e2302240. doi: 10.1002/advs.202302240. Epub 2023 Jun 17.

Abstract

Inspired by the brilliant and tunable structural colors based on the large refractive index contrast (Δn) and non-close-packing structures of chameleon skins, ZnS-silica photonic crystals (PCs) with highly saturated and adjustable colors are fabricated. Due to the large Δn and non-close-packing structure, ZnS-silica PCs show 1) intense reflectance (maximal: 90%), wide photonic bandgaps, and large peak areas, 2.6-7.6, 1.6, and 4.0 times higher than those of silica PCs, respectively; 2) tunable colors by simply adjusting the volume fraction of particles with the same size, more convenient than the conventional way of altering particle sizes; and 3) a relatively low threshold of PC's thickness (57 µm) possessing maximal reflectance compared to that (>200 µm) of the silica PCs. Benefiting from the core-shell structure of the particles, various derived photonic superstructures are fabricated by co-assembling ZnS-silica and silica particles into PCs or by selectively etching silica or ZnS of ZnS-silica/silica and ZnS-silica PCs. A new information encryption technique is developed based on the unique reversible "disorder-order" switch of water-responsive photonic superstructures. Additionally, ZnS-silica PCs are ideal candidates for enhancing fluorescence (approximately tenfold), approximately six times higher than that of silica PC.

Keywords: brilliant structural color; enhancing fluorescence; information encryption; photonic superstructures; refractive index contrast.