Unraveling the capture mechanism of gaseous As2O3 over H-ZSM-5 zeolite from coal-fired flue gas: Experimental and theoretical insights

Chemosphere. 2023 Sep:336:139243. doi: 10.1016/j.chemosphere.2023.139243. Epub 2023 Jun 15.

Abstract

Gaseous As2O3 discharged from coal-fired power plants results in severe detriments to the ecological environment. It is of great urgency to develop highly efficient As2O3 capture technology for reducing atmospheric arsenic contamination. Utilizing solid sorbents for gaseous As2O3 capture is a promising treatment for As2O3 capture. The zeolite of H-ZSM-5 was applied for As2O3 capture at high temperatures of 500-900 °C. Special attention was paid to clarifying its capture mechanism and identifying the influence of flue gas components via density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. Results revealed that due to high thermal stability with large specific areas, H-ZSM-5 demonstrated excellent arsenic capture at 500-900 °C. The captured arsenic consisted of As3+ and As5+ speciations, ascribed to As2O3 adsorption and oxidation. Moreover, As3+ and As5+ compounds were both through physisorption or chemisorption at 500-600 °C while dominant chemisorption at 700-900 °C. In particular, As3+ compounds were much more steadily fixed in products at all operating temperatures. Combining the characterization analysis and DFT calculations, it further verified that both Si-OH-Al groups and external Al species of H-ZSM-5 could chemisorb As2O3, and the latter exhibited much stronger affinities via orbital hybridization and electron transfer. The introduced O2 could facilitate As2O3 oxidation and fixation in H-ZSM-5, especially at a lower concentration of 2%. Additionally, H-ZSM-5 possessed great acid gas resistance for As2O3 capture under the concentration of NO or SO2 less than 500 ppm. AIMD simulations further identified that compared to NO and SO2, As2O3 was far more competitive and occupied the active sites of the Si-OH-Al groups and external Al species of H-ZSM-5. Overall, it demonstrated that H-ZSM-5 is a promising sorbent for As2O3 capture from coal-fired flue gas.

Keywords: As(2)O(3) capture; DFT calculations and AIMD simulations; Flue gas components; Functional groups; H-ZSM-5; Thermal stability.

MeSH terms

  • Arsenic* / chemistry
  • Coal
  • Gases
  • Zeolites*

Substances

  • Arsenic
  • ZSM-5 zeolite
  • Zeolites
  • Gases
  • Coal