Physiology of sedentary behavior

Physiol Rev. 2023 Oct 1;103(4):2561-2622. doi: 10.1152/physrev.00022.2022. Epub 2023 Jun 16.

Abstract

Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.

Keywords: active breaks; physical activity; physiology; sedentary behavior; sitting.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Aged
  • Body Weight
  • Cardiovascular System*
  • Child
  • Exercise / physiology
  • Humans
  • Insulins*
  • Sedentary Behavior

Substances

  • Insulins