Shear Assay Protocol for the Determination of Single-Cell Material Properties

J Vis Exp. 2023 May 19:(195). doi: 10.3791/65333.

Abstract

Irregular biomechanics are a hallmark of cancer biology subject to extensive study. The mechanical properties of a cell are similar to those of a material. A cell's resistance to stress and strain, its relaxation time, and its elasticity are all properties that can be derived and compared to other types of cells. Quantifying the mechanical properties of cancerous (malignant) versus normal (non-malignant) cells allows researchers to further uncover the biophysical fundamentals of this disease. While the mechanical properties of cancer cells are known to consistently differ from the mechanical properties of normal cells, a standard experimental procedure to deduce these properties from cells in culture is lacking. This paper outlines a procedure to quantify the mechanical properties of single cells in vitro using a fluid shear assay. The principle behind this assay involves applying fluid shear stress onto a single cell and optically monitoring the resulting cellular deformation over time. Cell mechanical properties are subsequently characterized using digital image correlation (DIC) analysis and fitting an appropriate viscoelastic model to the experimental data generated from the DIC analysis. Overall, the protocol outlined here aims to provide a more effective and targeted method for the diagnosis of difficult-to-treat cancers.

Publication types

  • Video-Audio Media

MeSH terms

  • Biomechanical Phenomena*
  • Elasticity
  • Stress, Mechanical
  • Viscosity