Spatio-temporal variation of groundwater pollution in urban wetlands and management strategies for zoning

J Environ Manage. 2023 Sep 15:342:118318. doi: 10.1016/j.jenvman.2023.118318. Epub 2023 Jun 13.

Abstract

Groundwater is an important resource to maintain the sustainable development of urban wetlands. The Jixi National Wetland Park (JNWP) was studied to realize the refined prevention and control of groundwater. The self-organizing map-K-means algorithm (SOM-KM), improved water quality index (IWQI), health risk assessment model and forward model were used comprehensively to evaluate the groundwater status and solute sources in different periods. The results showed that the groundwater chemical type in most areas was the HCO3-Ca type. Groundwater chemistry data from different periods were clustered into five groups. Groups 1 and 5 are affected by agricultural and industrial activities, respectively. The IWQI value in the normal period was higher in most areas due to the influence of spring ploughing. The east side of the JNWP was disturbed by human activities, and the quality of drinking water continued to deteriorate from the wet period to the dry period. 64.29% of the monitoring points showed good irrigation suitability. The health risk assessment model showed that the health risk was the largest in the dry period and the smallest in the wet period. The main factors causing health risks in the wet period and other periods were NO3- and F-, respectively. The overall cancer risk was within acceptable limits. The forward model and ion ratio analysis showed that the weathering of carbonate rocks was the main factor affecting the evolution of groundwater chemistry, accounting for 67.16%. The high-risk areas of pollution were mainly concentrated in the east of the JNWP. K+ and Cl- were the key monitoring ions in the risk-free zone and potential risk zone, respectively. The research can be used to help decision-makers carry out fine zoning control of groundwater.

Keywords: Groundwater evolution; Pollution risk; Self-organizing maps; Source identification; Wetland management.

MeSH terms

  • Environmental Monitoring / methods
  • Groundwater* / analysis
  • Humans
  • Water Pollutants, Chemical* / analysis
  • Water Quality
  • Wetlands

Substances

  • Water Pollutants, Chemical