Influence of the Inclusion of Propylene Carbonate Electrolyte Solvent on the Microstructure and Thermal and Mechanical Stability of Poly(l-lactic acid) and Poly(vinylidene fluoride- co-hexafluoropropylene) Battery Separator Membranes

J Phys Chem C Nanomater Interfaces. 2023 May 31;127(22):10480-10487. doi: 10.1021/acs.jpcc.3c02514. eCollection 2023 Jun 8.

Abstract

The influence of the inclusion of the organic solvent propylene carbonate (PC) in microporous membranes based on poly(l-lactic acid) (PLLA) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) has been studied based on its relevance for the application of those separator membranes in lithium-ion batteries. The membranes have been produced through solvent casting and characterized with respect to the swelling ratio originated by the uptake of the organic solvent. The organic solvent uptake affects the porous microstructure and crystalline phase of both membrane types. The organic solvent uptake amount affects the crystal size of the membranes as a consequence of the interaction between the solvent and the polymer, since the presence of the solvent modifies the melting process of the polymer crystals due to a freezing temperature depression effect. It is also shown that the organic solvent partially penetrates into the amorphous phase of the polymer, leading to a mechanical plasticizing effect. Thus, the interaction between the organic solvent and the porous membrane is essential to properly tailor membrane properties, which in turn will affect lithium-ion battery performance.