Development of biohybrid Ag2CrO4/rGO based nanocomposites with stable flotation properties as enhanced Photocatalyst for sewage treatment and antibiotic-conjugated for antibacterial evaluation

Int J Biol Macromol. 2023 Jul 31:244:125303. doi: 10.1016/j.ijbiomac.2023.125303. Epub 2023 Jun 11.

Abstract

The proposed research outlines a facile method to synthesize Silver Chromate/reduced graphene oxide nanocomposites (Ag2CrO4/rGO NCs) with a narrow dissemination size for the ecological treatment of hazardous organic dyes. The photodegradation performance toward the decontamination of model artificial methylene blue dye was assessed under solar light irradiation. The crystallinity, particle size, recombination of photogenerated charge carriers, energy gap and surface morphologies of synthesized nanocomposites were determined. The experiment objective is to use rGO nanocomposites to increase Ag2CrO4 photocatalytic efficiency in the solar spectrum. Tauc plots of ultraviolet-visible (UV-vis) spectrum were used to calculate the optical bandgap energy of the produced nanocomposites ∼1.52 eV, which resulted in a good photodegradation percentage of ∼92 % after 60 min irradiation of Solar light. At the same time, pure Ag2CrO4 and rGO nanomaterials showed ∼46 % and ∼ 30 %, respectively. The ideal circumstances were discovered by investigating the effects of several parameters, including catalyst loading and different pH levels, on the degradation of dyes. However, the final composites maintain their ability to degrade for up to five cycles. According to the investigations, Ag2CrO4/rGO NCs are an effective photocatalyst and can be used as the ideal material to prevent water pollution. Furthermore, antibacterial efficacy for the hydrothermally synthesized nanocomposite was tested against gram-positive (+ve) bacteria viz. Staphylococcus aureus and gram-negative (-ve) bacteria viz. Escherichia coli. The maximum zone of inhibition for S. aureus and E. coli were 18.5 and 17 mm, respectively.

Keywords: Methylene blue dye; Organic pollutant; Photocatalyst; Recombination; Silver chromate.

MeSH terms

  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Escherichia coli
  • Nanocomposites* / chemistry
  • Sewage
  • Staphylococcus aureus

Substances

  • Anti-Bacterial Agents
  • graphene oxide
  • Sewage