Mechanism of D-alanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers

Nat Microbiol. 2023 Jul;8(7):1318-1329. doi: 10.1038/s41564-023-01411-0. Epub 2023 Jun 12.

Abstract

Bacterial cell envelope polymers are often modified with acyl esters that modulate physiology, enhance pathogenesis and provide antibiotic resistance. Here, using the D-alanylation of lipoteichoic acid (Dlt) pathway as a paradigm, we have identified a widespread strategy for how acylation of cell envelope polymers occurs. In this strategy, a membrane-bound O-acyltransferase (MBOAT) protein transfers an acyl group from an intracellular thioester onto the tyrosine of an extracytoplasmic C-terminal hexapeptide motif. This motif shuttles the acyl group to a serine on a separate transferase that moves the cargo to its destination. In the Dlt pathway, here studied in Staphylococcus aureus and Streptococcus thermophilus, the C-terminal 'acyl shuttle' motif that forms the crucial pathway intermediate is found on a transmembrane microprotein that holds the MBOAT protein and the other transferase together in a complex. In other systems, found in both Gram-negative and Gram-positive bacteria as well as some archaea, the motif is fused to the MBOAT protein, which interacts directly with the other transferase. The conserved chemistry uncovered here is widely used for acylation throughout the prokaryotic world.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Alanine / metabolism
  • Bacteria / metabolism
  • Bacterial Proteins* / genetics
  • Bacterial Proteins* / metabolism
  • Micropeptides
  • Polymers*
  • Teichoic Acids / metabolism
  • Transferases

Substances

  • Bacterial Proteins
  • Polymers
  • Teichoic Acids
  • Alanine
  • Transferases