Comparison of Eco-friendly Ti-M Bimetallic Coordination Catalysts and Commercial Monometallic Sb- or Ti-Based Catalysts for the Synthesis of Poly(ethylene- co-isosorbide terephthalate)

ACS Omega. 2023 May 22;8(22):19237-19248. doi: 10.1021/acsomega.2c07831. eCollection 2023 Jun 6.

Abstract

Sustainable development greatly benefits from the effective synthesis of bio-based copolymers that are environmentally friendly. To enhance the polymerization reactivity for the production of poly(ethylene-co-isosorbide terephthalate) (PEIT), five highly active Ti-M (M = Mg, Zn, Al, Fe, and Cu) bimetallic coordination catalysts were designed. The catalytic activity of Ti-M bimetallic coordination catalysts and single Sb- or Ti-based catalysts was compared, and the effects of catalysts with a different type of coordination metal (Mg, Zn, Al, Fe, and Cu) on the thermodynamic and crystallization properties of copolyesters were explored. In polymerization, it was found that Ti-M bimetallic catalysts with 5 ppm (Ti) had higher catalytic activity than traditional antimony-based catalysts or Ti-based catalysts with 200 ppm (Sb) or 5 ppm (Ti). The Ti-Al coordination catalyst showed the best-improved reaction rate of isosorbide among the five transition metals used. Utilizing Ti-M bimetallic catalysts, a high-quality PEIT was successfully synthesized with the highest number-average molecular weight of 2.82 × 104 g/mol and the narrowest molecular weight distribution index of 1.43. The glass-transition temperature of PEIT reached 88.3 °C, allowing the copolyesters to be used in applications requiring a higher Tg, like hot filling. The crystallization kinetics of copolyesters prepared by some Ti-M catalysts was faster than that of copolyesters prepared by conventional titanium catalysts.