Failure Mechanism and Control Countermeasures for Argillaceous Surrounding Rock of Horsehead Roadway under High Stress

Materials (Basel). 2023 Jun 4;16(11):4180. doi: 10.3390/ma16114180.

Abstract

The argillaceous surrounding rock of a horsehead roadway under high stress conditions is prone to deformation and failure, and the control of its long-term stability is difficult. Based on the engineering practices that control the argillaceous surrounding rock of a horsehead roadway in the return air shaft in the Libi Coal Mine in Shanxi Province, field measurements, laboratory experimentation, numerical simulation, and industrial tests are used to analyze the main influencing factors and mechanism of the deformation and failure of the surrounding rock of the horsehead roadway. We propose principles and countermeasures to control the stability of the horsehead roadway. The main factors of the surrounding rock failure of the horsehead roadway include the poor lithology of argillaceous surrounding rocks, horizontal tectonic stress, the superimposed influence of additional stress from the shaft and construction disturbance, the small thickness of the anchorage layer in the roof, and the insufficient depth of floor reinforcement. The results show that the shaft's presence increases the horizontal stress peak and stress concentration range in the roof, and the plastic zone range. The stress concentration and plastic zones and deformations of the surrounding rock increase significantly with the increase in horizontal tectonic stress. The control principles for the argillaceous surrounding rock of the horsehead roadway include increasing the thickness of the anchorage ring, the floor reinforcement exceeding the minimum depth, and reinforced support in key positions. The key control countermeasures include an innovative prestressed full-length anchorage for the mudstone roof, active and passive reinforcement technology with cables, and a reverse arch for floor reinforcement. The field measurements show that the control of the surrounding rock using the prestressed full-length anchorage of the innovative anchor-grouting device is remarkable.

Keywords: argillaceous surrounding rock; deformation and failure; horsehead roadway; innovative anchor-grouting device; prestressed full-length anchorage; reverse arch.