Sol-Gel Synthesis and Photoluminescence Properties of a Far-Red Emitting Phosphor BaLaMgTaO6:Mn4+ for Plant Growth LEDs

Materials (Basel). 2023 May 28;16(11):4029. doi: 10.3390/ma16114029.

Abstract

Far-red (FR) emitting LEDs are known as a promising supplement light source for photo-morphogenesis of plants, in which FR emitting phosphors are indispensable components. However, mostly reported FR emitting phosphors are suffering from problems of wavelength mismatch with LED chips or low quantum efficiency, which are still far from practical applications. Here, a new efficient FR emitting double-perovskite phosphor BaLaMgTaO6:Mn4+ (BLMT:Mn4+) has been prepared by sol-gel method. The crystal structure, morphology and photoluminescence properties have been investigated in detail. BLMT:Mn4+ phosphor has two strong and wide excitation bands in the range of 250-600 nm, which matches well with a near-UV or blue chip. Under 365 nm or 460 nm excitation, BLMT:Mn4+ emits an intense FR light ranging from 650 to 780 nm with maximum emission at 704 nm due to 2Eg4A2g forbidden transition of Mn4+ ion. The critical quenching concentration of Mn4+ in BLMT is 0.6 mol%, and its corresponding internal quantum efficiency is as high as 61%. Moreover, BLMT:Mn4+ phosphor has good thermal stability, with emission intensity at 423 K keeping 40% of the room temperature value. The LED devices fabricated with BLMT:Mn4+ sample exhibit bright FR emission, which greatly overlaps with the absorption curve of FR absorbing phytochrome, indicating that BLMT:Mn4+ is a promising FR emitting phosphor for plant growth LEDs.

Keywords: BaLaMgTaO6:Mn4+; far-red emitting phosphor; photoluminescence; plant growth LEDs; sol-gel method.