Effect of Surface Modifications on Surface Roughness of Ti6Al4V Alloy Manufactured by 3D Printing, Casting, and Wrought

Materials (Basel). 2023 May 26;16(11):3989. doi: 10.3390/ma16113989.

Abstract

This work aimed to comprehensively evaluate the influence of different surface modifications on the surface roughness of Ti6Al4V alloys produced by selective laser melting (SLM), casting and wrought. The Ti6Al4V surface was treated using blasting with Al2O3 (70-100 µm) and ZrO2 (50-130 µm) particles, acid etching with 0.017 mol/dm3 hydrofluoric acids (HF) for 120 s, and a combination of blasting and acid etching (SLA). It was found that the optimization of the surface roughness of Ti6Al4V parts produced by SLM differs significantly from those produced by casting or wrought processes. Experimental results showed that Ti6Al4V alloys produced by SLM and blasting with Al2O3 followed by HF etching had a higher surface roughness (Ra = 2.043 µm, Rz = 11.742 µm), whereas cast and wrought Ti6Al4V components had surface roughness values of (Ra = 1.466, Rz = 9.428 m) and (Ra = 0.940, Rz = 7.963 m), respectively. For Ti6Al4V parts blasted with ZrO2 and then etched by HF, the wrought Ti6Al4V parts exhibited higher surface roughness (Ra = 1.631 µm, Rz = 10.953 µm) than the SLM Ti6Al4V parts (Ra = 1.336 µm, Rz = 10.353 µm) and the cast Ti6Al4V parts (Ra = 1.075 µm, Rz = 8.904 µm).

Keywords: 3D printing; Ti6Al4V; selective laser melting (SLM); surface roughness.

Grants and funding

The research was supported by the NKFIH from the project ‘Research on the health application of artificial intelligence, digital imaging, employment and material technology developments by linking the scientific results of Széchenyi István University and Semmelweis University’ under grant number TKP2021-EGA-21.