Low Frequency Attenuation Characteristics of Two-Dimensional Hollow Scatterer Locally Resonant Phonon Crystals

Materials (Basel). 2023 May 26;16(11):3982. doi: 10.3390/ma16113982.

Abstract

The finite element method (FEM) was applied to study the low frequency band gap characteristics of a designed phonon crystal plate formed by embedding a hollow lead cylinder coated with silicone rubber into four epoxy resin short connecting plates. The energy band structure, transmission loss and displacement field were analyzed. Compared to the band gap characteristics of three traditional phonon crystal plates, namely, the square connecting plate adhesive structure, embedded structure and fine short connecting plate adhesive structure, the phonon crystal plate of the short connecting plate structure with a wrapping layer was more likely to generate low frequency broadband. The vibration mode of the displacement vector field was observed, and the mechanism of band gap formation was explained based on the spring mass model. By discussing the effects of the width of the connecting plate, the inner and outer radii and height of the scatterer on the first complete band gap, it indicated that the narrower the width of the connecting plate, the smaller the thickness; the smaller the inner radius of the scatterer, the larger the outer radius; and the higher the height, the more conducive it is to the expansion of the band gap.

Keywords: hollow scatterer; local resonance; low frequency; phonon crystal.