Inverted Region in Electrochemical Reduction of CO2 Induced by Potential-Dependent Pauli Repulsion

J Am Chem Soc. 2023 Jul 5;145(26):14267-14275. doi: 10.1021/jacs.3c02447. Epub 2023 Jun 9.

Abstract

Electrochemical CO2 reduction reaction (eCO2RR) is of great significance to energy and environmental engineering, while fundamental questions remain regarding its mechanisms. Herein, we formulate a fundamental understanding of the interplay between the applied potential (U) and kinetics of CO2 activation in eCO2RR on Cu surfaces. We find that the nature of the CO2 activation mechanism in eCO2RR varies with U, and it is the sequential electron-proton transfer (SEPT) mechanism dominant at the working U but switched to the concerted proton-electron transfer (CPET) mechanism at highly negative U. We then identify that the barrier of the electron-transfer step in the SEPT mechanism exhibits an inverted region as U decreases, which originates from the rapidly rising Pauli repulsion in the physisorption of CO2 with decreasing U. We further demonstrate catalyst designs that effectively suppress the adverse effect of Pauli repulsion. This fundamental understanding may be general for the electrochemical reduction reactions of closed-shell molecules.