Phytoextraction of As by Pteris vittata L. assisted with municipal sewage sludge compost and associated mechanism

Sci Total Environ. 2023 Oct 1:893:164705. doi: 10.1016/j.scitotenv.2023.164705. Epub 2023 Jun 7.

Abstract

Pteris vittata L. (PV), an arsenic (As) hyperaccumulator, has a potential to extract As from As-polluted soils. Since available As in soils can be taken up by PV, As fraction variation associated rhizosphere environmental characteristics caused by municipal sewage sludge compost (MSSC) could provide possible to strengthen As phytoextraction by PV. In this study, the mechanism of phytoextraction of PV aided by MSSC was revealed from aspect of environmental characteristics of rhizosphere soils and physiological properties of PV. The effect of MSSC on available As in soils was investigated by soil incubation experiment. Furthermore, the influences of MSSC on enzymes activities, communities of soil bacteria and fungi, As concentrations, and As fraction in rhizosphere soils of PV were explored, and then the biomass and As accumulation of PV were examined by greenhouse pot experiments. After 90 days, available As in soil incubation experiment significantly increased by 32.63 %, 43.05 %, and 36.84 % under 2 %, 5 %, and 10 % treatment, respectively, compared with control treatment. Moreover, As concentrations in rhizosphere soils of PV under 2 %, 5 %, and 10 % treatment decreased by 4.62 %, 8.68 %, and 7.47 %, respectively, compared with control treatment. The available nutrients and enzyme activities in rhizosphere soils of PVs were improved under the MSSC treatment. Affected by MSSC, the dominant phylum and genus for both bacterial and fungal communities didn't change, but their relative abundance increased. Additionally, MSSC significantly increased biomass of PV with corresponding mean ranging from 2.82 to 3.42 g in shoot and 1.82 to 1.89 g in root, respectively. And the concentrations of As in shoot and root of PV treated by MSSC increased by 29.04 %-144.7 % and 26.34 %-81.78 %, respectively, in relative to control. The results of this study provided a basis for MSSC-strengthened phytoremediation for As-polluted soils.

Keywords: Antioxidant enzyme activities; Available As; Phytoremediation; Soil enzyme activities; Soil microbial community.

MeSH terms

  • Arsenic* / analysis
  • Bacteria
  • Biodegradation, Environmental
  • Composting*
  • Pteris*
  • Sewage
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Arsenic
  • Sewage
  • Soil Pollutants
  • Soil