Multiscale Architectured Nafion Membrane Derived from Lotus Leaf for Fuel Cell Applications

ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29084-29093. doi: 10.1021/acsami.3c03050. Epub 2023 Jun 8.

Abstract

Hierarchically patterned proton-exchange membranes (PEMs) have the potential to significantly increase the specific surface area, thus improving the catalyst utilization rate and performance of proton-exchange membrane fuel cells (PEMFCs). In this study, we are inspired by the unique hierarchical structure of the lotus leaf and proposed a simple three-step strategy to prepare a multiscale structured PEM. Using the multilevel structure of the natural lotus leaf as the original template, and after structural imprinting, hot-pressing, and plasma-etching steps, we successfully constructed a multiscale structured PEM with a microscale pillar-like structure and a nanoscale needle-like structure. When applied in a fuel cell, the multiscale structured PEM resulted in a 1.96-fold increase in discharge performance and a significant improvement in mass transfer compared to the membrane electrode assembly (MEA) with a flat PEM. The multiscale structured PEM has the combined advantage of a nanoscale and a microscale structure, benefiting from the markedly reduced thickness, increased surface area, and improved water management inherited from the multiscale structured lotus leaf's superhydrophobic characteristic. Using a lotus leaf as a multilevel structure template avoids the complex and time-consuming preparation process required by commonly used multilevel structure templates. Moreover, the remarkable architecture of biological materials can inspire novel and innovative applications in many fields through nature's wisdom.

Keywords: PDMS; PEM; PEMFC; hierarchical structure; lotus leaf; plasma-etching; thermal-imprinting.