Omics in acute-on-chronic liver failure

Liver Int. 2023 Jun 8. doi: 10.1111/liv.15634. Online ahead of print.

Abstract

Acute-on-chronic liver failure (ACLF) is a critical syndrome that develops in patients with chronic liver disease and is characterized by acute decompensation, single- or multiple-organ failure and high short-term mortality. Over the past few decades, ACLF has been progressively recognized as an independent clinical entity, and several criteria and prognostic scores have been proposed and validated by different scientific societies. However, controversies still exist in some aspects across regions, which mainly involve whether the definition of underlying liver diseases should include cirrhosis and non-cirrhosis. The pathophysiology of ACLF is complicated and remains unclear, although accumulating evidence based on different aetiologies of ACLF shows that it is closely associated with intense systemic inflammation and immune-metabolism disorder, which result in mitochondrial dysfunction and microenvironment imbalance, leading to disease development and organ failure. In-depth insight into the biological pathways involved in the mechanisms of ACLF and potential mechanistic targets that improve patient survival still needs to be investigated. Omics-based analytical techniques, including genomics, transcriptomics, proteomics, metabolomics and microbiomes, have developed rapidly and can offer novel insights into the essential pathophysiologic process of ACLF. In this paper, we briefly reviewed and summarized the current knowledge and recent advances in the definitions, criteria and prognostic assessments of ACLF; we also described the omics techniques and how omics-based analyses have been applied to investigate and characterize the biological mechanisms of ACLF and identify potential predictive biomarkers and therapeutic targets for ACLF. We also outline the challenges, future directions and limitations presented by omics-based analyses in clinical ACLF research.

Keywords: acute-on-chronic liver failure; omics; pathophysiology; precision therapy.

Publication types

  • Review