Correlation versus hybridization gap in CaMn[Formula: see text]Bi[Formula: see text]

Sci Rep. 2023 Jun 7;13(1):9271. doi: 10.1038/s41598-023-35812-2.

Abstract

We study the interplay between electronic correlations and hybridization in the low-energy electronic structure of CaMn[Formula: see text]Bi[Formula: see text], a candidate hybridization-gap semiconductor. By employing a DFT+U approach we find both the antiferromagnetic Néel order and band gap in good agreement with the corresponding experimental values. Under hydrostatic pressure, we find a crossover from hybridization gap to charge-transfer insulting physics due to the delicate balance of hybridization and correlations. Increasing the pressure above [Formula: see text] GPa we find a simultaneous pressure-induced volume collapse, plane-to-chain, insulator to metal transition. Finally, we have also analyzed the topology in the antiferromagnetic CaMn[Formula: see text]Bi[Formula: see text] for all pressures studied.