Enhanced biomethane production with a low carbon footprint via anaerobic co-digestion of swine wastewater with rice husk

Sci Total Environ. 2023 Sep 15:891:164612. doi: 10.1016/j.scitotenv.2023.164612. Epub 2023 Jun 5.

Abstract

An electricity-assisted anaerobic co-digestion (EAAD) process was developed and compared with conventional anaerobic co-digestion (AD) using piggery wastewater and rice husk as feedstocks. Various methodologies, including kinetic models, microbial community analyses, life-cycle carbon footprints, and preliminary economic analysis, were integrated to comprehensively evaluate the performance of the two processes. The results demonstrated that EAAD exhibited a positive improvement of 2.6 % to 14.5 % in biogas production compared to AD. The suitable wastewater-to-husk ratio for EAAD was found to be 3:1, which corresponded to a carbon-to‑nitrogen ratio of approximately 14. This ratio demonstrated positive co-digestion effects and electrical enhancements in the process. According to the modified Gompertz kinetics, the biogas production rate in EAAD ranged from 1.87 to 5.23 mL/g-VS/d, significantly higher than the range of 1.19 to 3.74 mL/g-VS/d observed in AD. The study also investigated the contributions of acetoclastic and hydrogenotrophic methanogens to biomethane formation, revealing that acetoclastic methanogens accounted for 56.6 % ± 0.6 % of the methane production, while hydrogenotrophic methanogens contributed to 43.4 % ± 0.6 %. No significant difference in the methanogenic reaction pathways was observed between AD and EAAD, indicating that the introduction of an external electric field did not alter the predominant pathways (p > 0.05, two-sample t-test). Furthermore, retrofitting existing AD plants with EAAD units can reduce the carbon intensity of piggery wastewater treatment by 17.6 % to 21.7 %. The preliminary economic analysis indicated a benefit-cost ratio of 1.33 for EAAD, confirming the feasibility of implementing EAAD for wastewater treatment while simultaneously producing bioenergy. Overall, this study provides valuable insights into upgrading the performance of existing AD plants by introducing an external electric field. It demonstrates that EAAD can achieve higher and cost-effective biogas production with a lower life-cycle carbon footprint, thus enhancing the sustainability and efficiency of the biogas production process.

Keywords: Co-digestion; Economic analysis; Life-cycle assessment; Microbial analysis; Modified Gompertz model; Reaction pathways.

MeSH terms

  • Anaerobiosis
  • Animals
  • Biofuels
  • Bioreactors
  • Carbon
  • Carbon Footprint
  • Digestion
  • Methane
  • Oryza*
  • Swine
  • Wastewater*

Substances

  • Wastewater
  • Biofuels
  • Methane
  • Carbon