Identification of ischemia-causing lesions using coronary plaque quantification and changes in fractional flow reserve derived from computed tomography across the lesion

Quant Imaging Med Surg. 2023 Jun 1;13(6):3630-3643. doi: 10.21037/qims-22-1049. Epub 2023 Apr 20.

Abstract

Background: This study sought to evaluate the association between coronary plaque characteristics, changes in the fractional flow reserve (FFR) derived from computed tomography across the lesion (ΔFFRCT), and lesion-specific ischemia using the FFR in patients with suspected or known coronary artery disease.

Methods: The study assessed coronary computed tomography (CT) angiography stenosis, plaque characteristics, ΔFFRCT, and FFR in 164 vessels of 144 patients. Obstructive stenosis was defined as stenosis ≥50%. An area under the receiver -operating characteristics curve (AUC) analysis was conducted to define the optimal thresholds for ΔFFRCT and the plaque variables. Ischemia was defined as a FFR of ≤0.80.

Results: The optimal cut-off value of ΔFFRCT was 0.14. Low-attenuation plaque (LAP) ≥76.23 mm3 and a percentage aggregate plaque volume (%APV) ≥28.91% can be used to predict ischemia independent of other plaque characteristics. The addition of LAP ≥76.23 mm3 and %APV ≥28.91% improved the discrimination (AUC, 0.742 vs. 0.649, P=0.001) and reclassification abilities [category-free net reclassification index (NRI), 0.339, P=0.027; relative integrated discrimination improvement (IDI) index, 0.093, P<0.001] of the assessments compared to the stenosis evaluation alone, and the addition of information about ΔFFRCT ≥0.14 further increased the discrimination (AUC, 0.828 vs. 0.742, P=0.004) and reclassification abilities (NRI, 1.029, P<0.001; relative IDI, 0.140, P<0.001) of the assessments.

Conclusions: The addition of the plaque assessment and ΔFFRCT to the stenosis assessments improved the identification of ischemia compared to the stenosis assessment alone.

Keywords: Plaque; coronary computed tomography angiography (CCTA); fractional flow reserve (FFR); machine learning.