Dietary administration of a postbiotic, heat-killed Pediococcus pentosaceus PP4012 enhances growth performance, immune response and modulates intestinal microbiota of white shrimp, Penaeus vannamei

Fish Shellfish Immunol. 2023 Aug:139:108882. doi: 10.1016/j.fsi.2023.108882. Epub 2023 Jun 4.

Abstract

The efficacy of postbiotics on the immune-related gene expression and gut microbiota of white shrimp, Penaeus vannamei remains unexplored. A commercial heat-killed postbiotic Pediococcus pentosaceus PP4012 was used to evaluate the growth performance, intestinal morphology, immunological status, and microbial community of white shrimp after dietary administration in this study. White shrimp (0.040 ± 0.003 g) were divided into three treatments; a control, inanimate P. pentosaceus (105 CFU g feed-1) at low concentration (IPL) and inanimate P. pentosaceus (106 CFU g feed-1) at high concentrations (IPH). The diets of IPL and IPH significantly increased final weight, specific growth rate and production compared to the control group. Shrimp fed with IPL and IPH significantly utilized feed more efficiently than those fed the control diet. The IPH treatment significantly lowered the cumulative mortality rate compared to the control and IPL diet following Vibrio parahaemolyticus infection. No significant difference was observed for Vibrio-like and lactic acid bacteria in intestine of shrimp fed with the control diet and the experimental diets. Adding inanimate P. pentosaceus significantly improved immune responses such as lysozyme and phagocytic activity compared to the control group. However, the total hemocyte count, phenoloxidase activity, respiratory burst, and superoxide dismutase activity were not significantly different among treatments. The immune-related genes alf, pen3a, and pen4 expression were significantly higher in shrimp fed IPL diet compared with control and IPH. Taxonomic identification of bacterial genera in all dietary groups belonged to two predominant phyla, Proteobacteria and Bacteroidota. An abundance of Photobacterium, Motilimonas, Litorilituus, and Firmicutes bacterium ZOR0006 were identified in the intestine of shrimp fed postbiotic diets. Unique microbes such as Cohaesibacter was discovered in the shrimp fed IPL while Candidatus Campbellbacteria, uncultured Verrucomicrobium DEV114 and Paenalcaligenes were discovered in the intestines of shrimp fed IPH diet. Collectively, these data suggest that including heat-killed P. pentosaceus, particularly IPH, can enhance growth performance, promote microbial diversity, elevate immune responses, and increase shrimp's resistance to V. parahaemolyticus.

Keywords: Growth performance; Immunological status; Intestinal microbiota; Pediococcus pentosaceus; Postbiotic.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Diet / veterinary
  • Dietary Supplements / analysis
  • Gastrointestinal Microbiome*
  • Hot Temperature
  • Immunity, Innate
  • Pediococcus pentosaceus
  • Penaeidae*